COP 4600 – Introduction To Operating Systems – Summer 2011

Homework #2 – 120 points – DUE DATE: Tuesday July 12th

1) (15 pts – 2 pts each) A process has associated with it the following table. For each logical address shown indicate if the address is legal or illegal. If it is a legal address, compute the corresponding physical address. All addresses are in the form <p, d>, where p = page number and d = displacement. Assume each page/frame is 1000 bytes in size.

Frame #
4
12
22
7
15
24
14

Logical Address	Is It A Legal Address?	Physical Address
<0, 444>		
<2, 2100>		
<6, 0>		
<5, 800>		
<1, 113>		
<3, 200>		
<4,1000>		

2) (15 pts – 2 pts each) Using the same page table as in problem 1. What happens when the size of the page is increased to 4000 bytes per page?

Logical Address	Is It A Legal Address?	Physical Address
<0, 444>		
<2, 2100>		
<6, 0>		
<5, 800>		
<1, 113>		
<3, 200>		
<4,1000>		

- 3) (25 pts 5 pts each) Consider a simple paging system with the following parameters: physical memory = 2^{64} bytes, page size = 2^{10} bytes, an application/program with 2^{16} pages of logical address space.
 - (a) How many bits are required for a logical address?
 - (b) How many bytes are in 1 page frame?
 - (c) How many of the bits in a physical address are used to specify the page/frame?
 - (d) How many entries will be in the page table?
 - (e) How many bits are required in each page table entry (assume the presence of a valid/invalid bit).
- (50 pts 10pts each)Assume that a dynamic partitioning scheme is being used, and the diagram below illustrates the configuration of the memory at some point in time. The shaded areas are allocated blocks; the white blocks are free blocks.

I	20	20	40	60	20	10	60	40	20	30	40	40
	МВ	MB	МВ	MB	MB	МВ	MB	МВ	MB	МВ	МВ	MB

The next three memory requests are for 40MB, 20MB, and 10MB, respectively. Give the starting memory address for each of the three new requests using the following allocation algorithms:

(a) First-fit

- (b) Best-fit (smallest remaining fragment)
- (c) Next-fit (assume the most recently added block was at location 0)
- (d) Next-fit (assume the most recently added block was at location 160)
- (e) Worst-fit (largest remaining fragment)
- 5) (15 pts 3pts each) Consider a simple segmentation system that has the following segment table:

Segment	Starting Address	Length (bytes)
0	234	100
1	668	568
2	1890	1300
3	345	250

For each of the following logical addresses, determine the physical address, or if the address is invalid:

Logical Address	Is It A Legal Address?	Physical Address
<0, 444>		
<2, 1100>		
<3, 200>		
<5, 800>		
<1, 513>		